RflySim 软件在环仿真实验

1. 实验背景

RflySim 软件在环仿真实验的背景是为了提供一个基于模型设计(Model-Based Design, MBD)的无人系统控制和安全测试工具链。这个工具链允许开发者使用 MATLAB/Simulink 来设计底层控制器和顶层应用,而无需直接接触 C++代码。RflySim 支持从建模、控制器设计、软件在环仿真(SIL)、硬件在环仿真(HIL)到实飞测试的全流程开发。。

RflySim工具链基于批处理技术开发了众多批处理脚本,让用户可以快速一键启动部署多架、多种、多样无人系统组合式仿真。提高了无人系统开发和仿真速度。平台较常用的批处理脚本:SITLRun.bat:是开启多机软件在环仿真的批处理文件,其本质上是通过脚本方式启动并配置 RflySim工具链的部分软件和选项。

2. 实验目的

了解如何在 RflySim 中进行软件在环仿真。

3. 实验环境

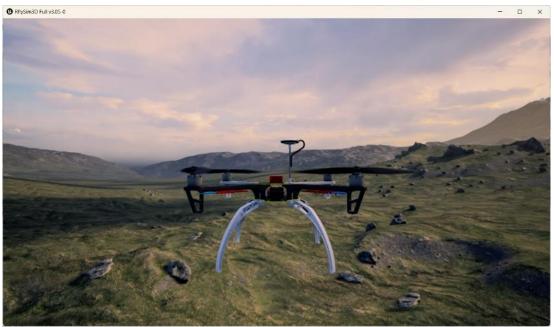
序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 工具链 ^①		

①: 安装方式请见: https://rflysim.com/doc/zh/HowToInstall.pdf

4. 实验效果

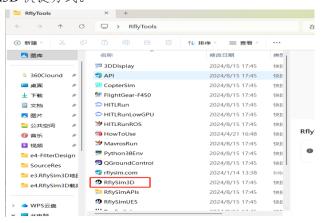

本实验利用脚本自动和 CopterSim 软件手动进行软件在环仿真实验。


5. 实验步骤

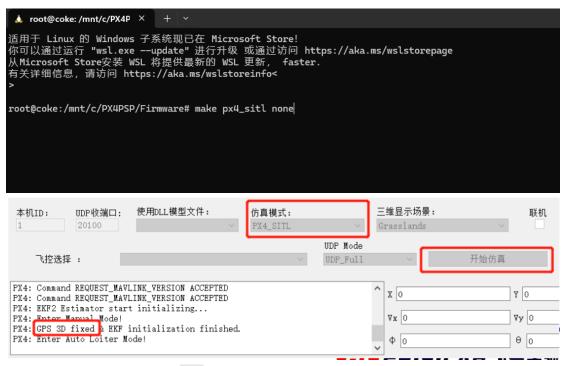

5.1. 方法一: 使用脚本快捷方式

(1) 打开【RflySim 安装目录】\RflySimAPIs 或者打开桌面\RflyTools 文件夹, 找到 SI TLRun.bat 脚本,双击 SITLRun 快捷方式,并输入 1,再回车。等到 RflySim3D 显示"***E KF3DFixed"(CopterSim 上也会显示),表示飞控已经初始化完毕。

(2) 在 QGC 地面站中,点击左侧起飞按钮,设置右侧的悬停高度,滑动上方的滑块。即可看到四旋翼无人机正常起飞。



5.2. 方法二: 使用 CopterSim 手动软件在环仿真


(1) 打开【RflySim 安装目录】\CopterSim\CopterSim.exe 软件,或者打开桌面\RflyTo ols文件夹内 CopterSim快捷方式。并在其仿真模式选项选择标签 PX4_SITL,同时检查其他配置保持默认。点击开始仿真。

(2) 打开【RflySim 安装目录】\RflySim3D\RflySim3D.exe 软件,或者打开桌面\RflyTools文件夹内 RflySim3D 快捷方式。

(3) 点击桌面 RflyTools 文件夹内的编译器快捷方式(例如,Win10WSL),在其中输入命令"make px4_sitl none"。等待 CopterSim 左下角消息框提示"GPS 3D Fixed"完成初始化。

注:在任意 cmd 窗口中输入 bash,可以打开 WSL 子系统窗口,它可以看作 Ubuntu 的虚拟机,在其中可以测试 Linux 的一些命令,并且学习 Linux 系统编程方法。

(4) 打开桌面\RflyTools 文件夹内的 QGroundControl (QGC) 地面站软件,即可控制飞机自动起飞。点击左边的"起飞"按钮,在中间和右边会弹出两个框。最右边的框可以设置起飞高度,然后滑动中间的滑块进行起飞。

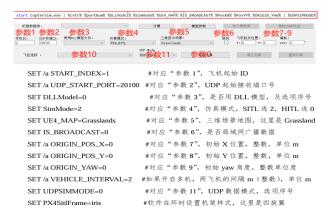
6. 常见问题

问1: 无人机软件在环仿真飞行的数据(高度,速度,历史数据)怎么查看?

答 1: 在线查看飞行日志(软件在环,硬件在环都是可以的),先跑完软/硬件在环在QGC 打开左上角图标,再点击 AnalyzeTools。再点击 LogDownload,选择下载的路径会生成一个 ulg 格式的文件打开 https://logs.px4.io/网站点击 ChooseFile 查找 ulg 格式的文件。

问 2: 运行软件在环脚本到,遇到仿真启动延迟的问题该如何解决?

答 2: 在 SIL 或 HIL 仿真时,如果 RflySim3D 出现启动延迟,可以尝试增加启动脚本中的延迟时间,或者检查是否有其他程序占用了必要的资源或端口。建议可以尝试重启脚本或者电脑后再运行。


问3:运行软件在环脚本到,遇到RflySim3D报错的情况如何解决?

答 3: 如果在仿真时遇到致命错误,如显卡驱动兼容性问题,建议更新显卡驱动到最新版本。如果问题依旧,请联系 RflySim 平台的售后人员(微信公众号:飞思实验室)获取支持。

7. 拓展实验

7.1. 拓展实验 1: BAT 脚本启动组件实验

本实验的实验目的为了熟悉 BAT 配置;使用【RflySim 安装目录】\RflySimAPIs\2.RflySimUsage\1.BasicExps\e6_BAT-Startup 中的程序。双击运行"OneStartup.bat",即可看到打开了QGroundControl、RflySim3D、CopterSim 三款软件。RflySimUE5 与 RflySim3D 的使用方法完全相同,区别在于需要修改 bat 脚本中字符串"%PSP_PATH%\RflySim3D"为"%PSP_PATH%\RflySimUE5"以启用 UE5 版本引擎。其他 bat 脚本修改相同。用文本编辑器打开"RflySimAPIs\SITLRun.bat"(对应桌面 SITLRun 快捷方式)

预期结果:通过该例程熟悉一键启动脚本的内容,并自行进行更改。

8. 参考文献

- [1] RflySim 实验平台配置与使用【RflySim 安装目录】\RflySimAPIs\2.RflySimUsage\API.p df\1.1.CopterSim
- [2] RflySim 实验平台配置与使用【RflySim 安装目录】\RflySimAPIs\2.RflySimUsage\API.p df\1.6.SITL/HITL 批处理脚本