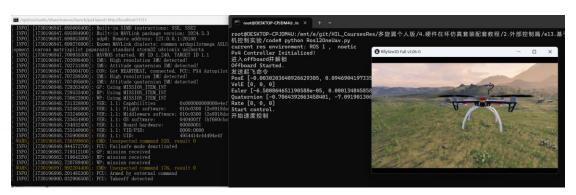
基于 MAVROS 的无人机控制实验

1. 实验背景

MAVROS 是一个 ROS (机器人操作系统) 包,它提供了一个 MAVLink 协议的封装,使得 ROS 能够与 PX4 飞行控制软件进行通信。通过 MAVROS,开发者可以在 ROS 环境中控制无人机,获取传感器数据,并实现自动化任务。MAVROS 使得无人机的控制和数据处理变得更加灵活和高效

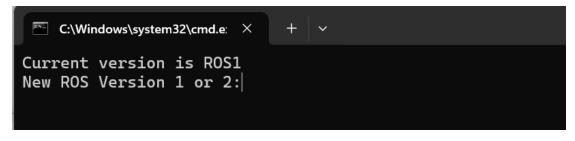
2. 实验目的


通过本实验,参与者将学习如何利用 MAVROS 进行无人机的控制和数据处理,以提高无人机操作的灵活性和效率。

3. 实验环境

序号	软件环境	硬件环境	
		名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 工具链	多旋翼硬件在环仿真套装 [©]	1

- ①:安装方式请见: https://rflysim.com/doc/zh/HowToInstall.pdf
- ②: 详细说明文档请见: https://rflysim.com/doc/zh/B/1.1HILs.html


4. 实验效果

5. 实验步骤

5.1. 步骤一: ROS 版本确认及切换

(1) 双击打开 <u>code\RosSwitch.bat</u>,即可看到 RflySim 工具链中目前的 ROS 版本,如下所示为 ROS 1 的 Noetic 版本,本实验支持 ROS 1 和 ROS 2 版本,可在 New ROS Version 1 or 2: 后输入: 1或2来切换不同的 ROS 版本。

5.2. 步骤二: 启动软件在环仿真

(1) 在打开 <u>code\SITLRunROS.bat</u>,即可自动启动 RflySim3D、CopterSim、QGround Control 软件。等待 CopterSim 的状态框中显示: PX4: GPS 3D fixed & EKF initialization finis hed。

5.3. 步骤三: 进入 MAVROS 控制

双击打开 <u>code\WinWSL.bat</u> 脚本输入: python Ros120neUav.py。等待 MAVROS 自动通信成功,成功后无人机将自动进入 Offboard 模式,无人机起飞,向上飞行 0.8 米后以 0.1m/s 速度向前飞行,并开始缓慢调转方向。

6. 常见问题

问1: MAVSDK 支持哪些语言?

答: MAVSDK 支持 C++、Python 和 Swift 等多种语言,允许开发者根据个人喜好和需求选择合适的编程语言进行开发。

问 2: MAVSDK 是否支持多无人机控制?

答:是的,MAVSDK C++库允许 C++应用程序同时连接到多个无人机。而 Python、Sw ift 等语言的包装器一次只能连接到一个无人机,但可以通过实例化多个包装器来连接多个系统。

问 3: MAVSDK 是否支持 MAVLink 1 协议?

答: 不支持, MAVSDK 仅支持 MAVLink 2.0 协议

7. 拓展实验

7.1. 拓展实验 1: 基于 MAVSDK 的自动航点飞行实验

本实验为了实现多旋翼无人机的自动航点飞行功能,通过预设的航点任务,使无人机能够自动依次飞行到指定的位置点。大致操作步骤:使用 MAVSDK API 建立与无人机的连接。设置航点任务,指定无人机需要飞行的位置点。监控无人机的飞行状态,并根据需要调整航点任务。

预期结果:无人机能够根据预设的航点任务自动飞行,并在执行完所有航点后安全返回起飞点。

7.2. 拓展实验 2: 基于 MAVSDK 的无人机遥控系统开发

本实验为了基于 MAVSDK 的无人机遥控系统开发。大致操作步骤: 初始化 MAVSDK 并建立与无人机的连接, 通过 MAVSDK 提供的 API 控制无人机起飞和悬停, 在需要时, 通过 API 控制无人机降落。

预期结果: 无人机能够响应遥控系统的指令,完成起飞、悬停和降落等基本飞行操作

8. 参考文献

[1] 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020