import time import sys import VisionCaptureApi import PX4MavCtrlV4 as PX4MavCtrl import cv2 import UE4CtrlAPI import json import numpy as np import os # xxx ue = UE4CtrlAPI.UE4CtrlAPI() #Create a new MAVLink communication instance, UDP sending port (CopterSim’s receving port) is 20100 mav = PX4MavCtrl.PX4MavCtrler(1) # The IP should be specified by the other computer vis = VisionCaptureApi.VisionCaptureApi() # Send command to UE4 Window 1 to change resolution ue.sendUE4Cmd('r.setres 1280x720w',0) # 设置UE4窗口分辨率,注意本窗口仅限于显示,取图分辨率在json中配置,本窗口设置越小,资源需求越少。 ue.sendUE4Cmd('t.MaxFPS 30',0) # 设置UE4最大刷新频率,同时也是取图频率 ue.sendUE4Cmd('') time.sleep(2) # VisionCaptureApi 中的配置函数 vis.jsonLoad() # 加载Config.json中的传感器配置文件 # vis.RemotSendIP = '192.168.3.80' # 注意,手动修改RemotSendIP的值,可以将图片发送到本地址 # 如果不修改这个值,那么发送的IP地址为json文件中SendProtocol[1:4]定义的IP # 图片的发送端口,为json中SendProtocol[5]定义好的。 isSuss = vis.sendReqToUE4() # 向RflySim3D发送取图请求,并验证 if not isSuss: # 如果请求取图失败,则退出 sys.exit(0) vis.startImgCap() # 开启取图,并启用共享内存图像转发,转发到填写的目录 #mav.InitMavLoop(UDPMode), where UDPMode=0,1,2,3,4 # Use MAVLink_Full Mode to control PX4 # In this mode, this script will send MAVLinkOffboard message to PX4 directly # and receive MAVLink data from PX4 # Obviously, MAVLink_Full mode is slower than UDP mode, but the functions and data are more comprehensive mav.InitMavLoop() # the same as mav.InitMavLoop() in other PythonVision demos time.sleep(1) print('Start Offboard Send!') mav.initOffboard() time.sleep(1) # Check if the PX4'EKF has correctlly initialized, which is necessary for offboard control if not mav.isPX4Ekf3DFixed: print('CopterSim/PX4 still not 3DFxied, please wait and try again.') sys.exit(0) else: print('CopterSim/PX4 3D Fixed, ready to fly.') mav.SendMavArm(True) print('Fly to pos 0, 0, -2!') mav.SendPosNED(0, 0, -2, 0) lastTime = time.time() # 获取当前文件所在目录 current_directory = os.path.dirname(os.path.abspath(__file__)) # 构建完整的文件路径 config_file_path = os.path.join(current_directory, 'Config.json') # 加载测距传感器配置文件 with open(config_file_path, 'r', encoding='utf-8') as config_file: config = json.load(config_file) sensors = config['VisionSensors'] sensor = sensors[0] sensor_distance = sensor['SensorPosXYZ'][0] while True: if vis.hasData[0] and vis.hasData[1]: # 是否成功取图和获取测距传感器 img = vis.Img[0] # 获取0号传感器,图像数据指针,格式为opencv图像格式 obj_distance = vis.Img[1] # 获取1号传感器,距离数据指针,格式见VisionCaptureApi.DistanceSensor() # 获取图像尺寸 height, width, _ = img.shape # 计算中心坐标 center_x = width // 2 center_y = height // 2 crosshair_length = 20 crosshair_thickness = 2 cv2.line(img, (center_x - crosshair_length, center_y), (center_x + crosshair_length, center_y), (0, 0, 255), crosshair_thickness) cv2.line(img, (center_x, center_y - crosshair_length), (center_x, center_y + crosshair_length), (0, 0, 255), crosshair_thickness) # 绘制距离信息 distance_text = f"Distance: {obj_distance.Distance} m" cv2.putText(img, distance_text, (center_x - 50, center_y + crosshair_length + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # 显示图像 cv2.imshow('Image', img) cv2.waitKey(1) time.sleep(0.01) # 注意:距离传感器的数据定义如下 # class DistanceSensor: # ## @brief DistanceSensor的构造函数 # # @param 初始化类属性 # def __init__(self): # ## @var DistanceSensor.TimeStamp # # @brief 这是当前消息的时间戳,初始化为 0 # self.TimeStamp = 0 # ## @var DistanceSensor.Distance # # @brief 这是距离传感器测量到的距离,初始化为 0 # self.Distance = 0 # ## @var DistanceSensor.CopterID # # @brief 用于标识直升机的ID,初始化为 0 # self.CopterID = 0 # ## @var DistanceSensor.RayStart # # @brief 这是射线起点的坐标,初始化为[0,0,0] # self.RayStart = [0,0,0] # ## @var DistanceSensor.AngEular # # @brief 这是传感器的欧拉角(Euler Angles),初始化为[0,0,0] # self.AngEular = [0,0,0] # ## @var DistanceSensor.ImpactPoint # # @brief 这是碰撞点的坐标,初始化为[0,0,0] # self.ImpactPoint = [0,0,0] # ## @var DistanceSensor.BoxOri # # @brief 这是盒子的原点或参考点,初始化为[0,0,0] # self.BoxOri = [0,0,0]